## functions in legndr.i - l

legndr

legndr(l,m, x) return the associated Legendre function Plm(x). The X may be an array (-1<=x<=1), but L and M (0<=M<=L) must be scalar values. For m=0, these are the Legendre polynomials Pl(x). Relation of Plm(x) to Pl(x): Plm(x) = (-1)^m (1-x^2)^(m/2) d^m/dx^m(Pl(x)) Relation of Plm(x) to spherical harmonics Ylm: Ylm(theta,phi)= sqrt((2*l+1)(l-m)!/(4*pi*(l+m)!)) * Plm(cos(theta)) * exp(1i*m*phi) Interpreted function, defined at i/legndr.i line 12SEE ALSO: ylm_coef