functions in std.i - w
warranty
warranty Keyword, defined at i0/std.i line 72SEE copyright
where
where(x) returns the vector of longs which is the index list of non-zero values in the array x. Thus, where([[0,1,3],[2,0,4]]) would return [2,3,4,6]. If noneof(x), where(x) is a special range function which will return a nil value if used to index an array; hence, if noneof(x), then x(where(x)) is nil. If x is a non-zero scalar, then where(x) returns a scalar value. The rather recondite behavior for scalars and noneof(x) provides maximum performance when the merge function to be used with the where function. Builtin function, documented at i0/std.i line 850SEE ALSO: where2, merge, merge2, allof, anyof, noneof, nallof, sort
where2
where2(x) like where(x), but the returned list is decomposed into indices according to the dimensions of x. The returned list is always 2 dimensional, with the second dimension the same as the dimension of where(x). The first dimension has length corresponding to the number of dimensions of x. Thus, where2([[0,1,3],[2,0,4]]) would return [[2,1],[3,1],[1,2],[3,2]]. If noneof(x), where2 returns [] (i.e.- nil). Interpreted function, defined at i0/std.i line 864SEE ALSO: where, merge, merge2, allof, anyof, noneof, nallof, sort
write
n= write(f, format=fstring, linesize=l, obj1, obj2, ...) n= write(format=fstring, linesize=l, obj1, obj2, ...) or strings= swrite(format=fstring, linesize=l, obj1, obj2, ...) writes text to I/O stream F (1st form), or to the terminal (2nd form), or to the STRINGS string array (3rd form), representing arrays OBJ1, OBJ2, ..., according to the optional FSTRING. The optional linesize L defaults to 80 characters, and helps restrict line lengths when FSTRING is not given, or does not contain newline directives. The write function always appends to the end of a text file; the position for a sequence of reads is not affected by intervening writes. There must be one conversion specifier (see below) in FSTRING for each OBJ to be written; the type of the conversion specifier must generally match the type of the OBJ. That is, an integer OBJ requires an integer specifier (d, i, o, u, x, or c) in FSTRING, a real OBJ requires a real specifier (e, f, or g), a string OBJ requires the string specifier (s), and a pointer OBJ requires a the pointer specifier (p). An OBJ may not be complex, a structure instance, or any non-array Yorick object. If FSTRING is not supplied, or if it has fewer conversion specifiers than the number of OBJ arguments, then Yorick supplies default specifiers (" %8ld" for integers, " %14.6lg" for reals, " %s" for strings, and " %8p" for pointers). If FSTRING contains more specifiers than there are OBJ arguments, the part of FSTRING beginning with the first specifier with no OBJ is ignored. The OBJ may be scalar or arrays, but the dimensions of the OBJ must be conformable. If the OBJ are arrays, Yorick behaves as if he write were called in a loop dimsof(OBJ1, OBJ2, ...) times, writing one array element of each of the OBJ according to FSTRING on each pass through the loop. The swrite function returns a string array with dimensions dimsof(OBJ1, OBJ2, ...). The write function inserts a newline between passes through the array if the line produced by the previous pass did not end with a newline, and if the total number of characters output since the previous inserted newline, plus the number of characters about to be written on the current pass, would exceed L characters (L defaults to 80). The write function returns the total number of characters output. The FSTRING is composed of a series of "directives" which are (1) characters other than % -- copied directly to output (2) conversion specifiers beginning with % and ending with a character specifying the type of conversion -- specify how to convert an OBJ into characters for output The conversion specifier is of the form %FW.PSC, where: F is zero or more optional flags: - left justify in field width + signed conversion will begin with either + or - (space) signed conversion will begin with either space or - # alternate form (see description of each type below) 0 pad field width with leading 0s instead of leading spaces W is either a decimal integer specifying the minimum field width (padded as specified by flags), or not present to use the minimum number of characters required. .P is either a decimal integer specifying the precision of the result, or not present to get the default. For integers, this is the number of digits to be printed (possibly forcing leading zeroes), and defaults to 1. For reals, this is the number of digits after the decimal point, and defaults to 6. For strings, this is the maximum number of characters to print, and defaults to infinity. S is either one of the characters 'h', 'l', or 'L', or not present. Yorick allows this for compatibility with the C library functions, but ignores it. C is a character specifying the type of conversion: d, i - decimal integer o - octal integer (# forces leading 0) u - unsigned decimal integer (same as d for Yorick) x, X - hex integer (# forces leading 0x) f - floating point real in fixed point notation (# forces decimal) e, E - floating point real in scientific notation g, G - floating point real in fixed or scientific notation depending on the value converted (# forces decimal) s - string of ASCII characters c - integer printed as corresponding ASCII character p - pointer % - the ordinary % character; complete conversion specification must be "%%" The write function is modeled on the ANSI standard C library fprintf and sprintf functions, but differs in several respects: (1) Yorick's write cannot handle the %n conversion specifier in FSTRING. (2) Yorick's write may insert additional newlines if the OBJ are arrays, to avoid extremely long output lines. Builtin function, documented at i0/std.i line 2144SEE ALSO: print, exit, error, read, rdline, open, close, save, restore