functions in std.i - t
tan
tan Builtin function, documented at i0/std.i line 565SEE sin
tanh
tanh Builtin function, documented at i0/std.i line 604SEE sinh
timer
timer, elapsed or timer, elapsed, split updates the ELAPSED and optionally SPLIT timing arrays. These arrays must each be of type array(double,3); the layout is [cpu, system, wall], with all three times measured in seconds. ELAPSED is updated to the total times elapsed since this copy of Yorick started. SPLIT is incremented by the difference between the new values of ELAPSED and the values of ELAPSED on entry. This feature allows for primitive code profiling by keeping separate accounting of time usage in several categories, e.g.-- elapsed= total= cat1= cat2= cat3= array(double, 3); timer, elapsed0; elasped= elapsed0; ... category 1 code ... timer, elapsed, cat1; ... category 2 code ... timer, elapsed, cat2; ... category 3 code ... timer, elapsed, cat3; ... more category 2 code ... timer, elapsed, cat2; timer, elapsed0, total; The wall time is not absolutely reliable, owning to possible rollover at midnight. Builtin function, documented at i0/std.i line 3555SEE ALSO: timestamp, timer_print
timer_print
timer_print, label1, split1, label2, split2, ... or timer_print or timer_print, label_total prints out a timing summary for splits accumulated by timer. timer_print, "category 1", cat1, "category 2", cat2, "category 3", cat3, "total", total; Interpreted function, defined at i0/std.i line 3583SEE ALSO: timer
timestamp
timestamp() returns string of the form "Sun Jan 3 15:14:13 1988" -- always has 24 characters. Builtin function, documented at i0/std.i line 3548SEE ALSO: timer
transpose
transpose(x) or transpose(x, permutation1, permutation2, ...) transpose the first and last dimensions of array X. In the second form, each PERMUTATION specifies a simple permutation of the dimensions of X. These permutations are compounded left to right to determine the final permutation to be applied to the dimensions of X. Each PERMUTATION is either an integer or a 1D array of integers. A 1D array specifies a cyclic permutation of the dimensions as follows: [3, 5, 2] moves the 3rd dimension to the 5th dimension, the 5th dimension to the 2nd dimension, and the 2nd dimension to the 3rd dimension. Non-positive numbers count from the end of the dimension list of X, so that 0 is the final dimension, -1 in the next to last, etc. A scalar PERMUTATION is a shorthand for a cyclic permutation of all of the dimensions of X. The value of the scalar is the dimension to which the 1st dimension will move. Examples: Let x have dimsof(x) equal [6, 1,2,3,4,5,6] in order to be able to easily identify a dimension by its length. Then: dimsof(x) == [6, 1,2,3,4,5,6] dimsof(transpose(x)) == [6, 6,2,3,4,5,1] dimsof(transpose(x,[1,2])) == [6, 2,1,3,4,5,6] dimsof(transpose(x,[1,0])) == [6, 6,2,3,4,5,1] dimsof(transpose(x,2)) == [6, 6,1,2,3,4,5] dimsof(transpose(x,0)) == [6, 2,3,4,5,6,1] dimsof(transpose(x,3)) == [6, 5,6,1,2,3,4] dimsof(transpose(x,[4,6,3],[2,5])) == [6, 1,5,6,3,2,4] Builtin function, documented at i0/std.i line 1274
typeof
typeof(object) returns a string describing the type of object. For the basic data types, these are "char", "short", "int", "long", "float", "double", "complex", "string", "pointer", "struct_instance", "void", "range", "struct_definition", "function", "builtin", "stream" (for a binary stream), and "text_stream". Builtin function, documented at i0/std.i line 445SEE ALSO: structof, dimsof, sizeof, numberof, nameof