/* * gammp.i - $Id$ * Incomplete gamma (chi-square distribution) and beta functions. */ /* Copyright (c) 2002. The Regents of the University of California. All rights reserved. */ /* Algorithms from Numerical Recipes, Press, et. al., section 6.2, * Cambridge University Press (1988). */ require, "gamma.i"; func gammp (a, x, &q, &lg) /* DOCUMENT gammp(a, x) * or gammp(a, x, q, lg) * return P(a,x) = int[0 to x]{ du * u^(a-1)*exp(-u) } / gamma(a) * optionally return Q(a,x) = 1-P(a,x) and ln(gamma(a)) * * Note that erf(x)=gammp(0.5,x^2) and erfc(x)=gammq(0.5,x^2) * Also P(chi2|nu)=gammp(0.5*nu,0.5*chi2) * and Q(chi2|nu)=gammq(0.5*nu,0.5*chi2) * are the probabilities that an observed chi-square be less than * or greater than (P or Q) chi2 when there are nu degrees of freedom * (terms in the chi-square sum). * * SEE ALSO: gammq, betai, ln_gamma (gamma.i), (dawson.i) */ { lg = ln_gamma(a); fact = double(!x); fact = (1.-fact)*exp(-x+a*log(x+fact)-lg); x += 0.*a; a += 0.*x; mask = x < a+1.; list = where(mask); if (numberof(list)) { p1 = fact(list)*_gammp(a(list), x(list)); q1 = 1. - p1; } list = where(!mask); if (numberof(list)) { q = fact(list)*_gammq(a(list), x(list)); p = 1. - q; } q = merge(q1, q, mask); return merge(p1, p, mask); } func gammq (a, x, &p, &lg) /* DOCUMENT gammq(a, x) * or gammq(a, x, p, lg) * return Q(a,x) = 1 - int[0 to x]{ du * u^(a-1)*exp(-u) } / gamma(a) * optionally return P(a,x) = 1-Q(a,x) and ln(gamma(a)) * * Note that erf(x)=gammp(0.5,x^2) and erfc(x)=gammq(0.5,x^2) * Also P(chi2|nu)=gammp(0.5*nu,0.5*chi2) * and Q(chi2|nu)=gammq(0.5*nu,0.5*chi2) * are the probabilities that an observed chi-square be less than * or greater than (P or Q) chi2 when there are nu degrees of freedom * (terms in the chi-square sum). * * SEE ALSO: gammp, betai, ln_gamma (gamma.i), (dawson.i) */ { { local q; } p = gammp(a, x, q, lg); return q; } func _gammp(a, x) { term = tot = total = 1./a; ndx = indgen(numberof(total)); if (numberof(total) == 1) total = [total(1)]; for (i=0 ; i<_gamm_max ; ++i) { a += 1.0; term *= x/a; tot += term; mask = abs(term) < abs(tot)*_gamm_err; list = where(mask); if (numberof(list)) total(ndx(list)) = tot(list); list = where(!mask); if (!numberof(list)) break; ndx = ndx(list); a = a(list); x = x(list); term = term(list); tot = tot(list); } if (numberof(list)) error, "global variable _gamm_err or _gamm_max too small"; if (numberof(total) == 1) total = total(1); return total; } func _gammq(a, x) { r = rold = b0 = 0.*x; if (numberof(r) == 1) r = [r(1)]; a0 = b1 = ren = 1. + b0; a1 = x; ndx = indgen(numberof(r)); for (i=1 ; i<=_gamm_max ; ++i) { tmp = i - a; a0 = (a1+a0*tmp)*ren; b0 = (b1+b0*tmp)*ren; tmp = i*ren; a1 = x*a0+tmp*a1; b1 = x*b0+tmp*b1; mask = abs(b1-a1*rold) < abs(b1)*_gamm_err; list = where(mask); if (numberof(list)) r(ndx(list)) = b1(list)/a1(list); list = where(!mask); if (!numberof(list)) break; ndx = ndx(list); a = a(list); x = x(list); a0 = a0(list); a1 = a1(list); b0 = b0(list); b1 = b1(list); ren = 1./(a1+!a1); rold = b1*ren; } if (numberof(list)) error, "global variable _gamm_err or _gamm_max too small"; if (numberof(r) == 1) r = r(1); return r; } _gamm_err = 1.e-13; _gamm_max = 200; func betai (a, b, x) /* DOCUMENT betai(a, b, x) * return I_x(a,x) = int[0 to x]{ du * u^(a-1)*(1-u)^(b-1) } / beta(a,b) * the incomplete beta function * * betai(a,b,x) = 1 - betai(b,a,1-x) * * Note that Student's t-distribution is * A(t|nu) = 1 - betai(0.5*nu,0.5, nu/(nu+t^2)) * The F-distribution is * Q(F|nu1,nu2) = betai(0.5*nu2,0.5*nu1, nu2/(nu2+F*nu1)) * * SEE ALSO: gammp, gammq, ln_gamma (gamma.i), (dawson.i) */ { mask = x < (a+1.)/(a+b+2.); fact = 0.*mask; x += fact; a += fact; b += fact; xc = 1.-x; fact = double((!x) | (!xc)); fact = (1.-fact)*exp(ln_gamma(a+b)-ln_gamma(a)-ln_gamma(b)+ a*log(x+fact)+b*log(xc+fact)); list = where(mask); if (numberof(list)) { r1 = a(list); r1 = fact(list)*_betai(r1, b(list), x(list))/r1; } list = where(!mask); if (numberof(list)) { r = b(list); r = 1. - fact(list)*_betai(r, a(list), xc(list))/r; } return merge(r1, r, mask); } func _betai(a, b, x) { r = 0.*x; a0 = b0 = b1 = rold = 1. + r; a1 = 1. - (a+b)*x/(a+1.); if (numberof(r) == 1) r = [r(1)]; ndx = indgen(numberof(r)); for (i=1 ; i<=_gamm_max ; ++i) { ii = double(i); ii2a = ii+ii+a; tmp = ii*(b-ii)*x/((ii2a-1)*ii2a); a0 = (a1+a0*tmp); b0 = (b1+b0*tmp); ii += a; tmp = -ii*(ii+b)*x/((ii2a+1.)*ii2a); a1 = a0+tmp*a1; b1 = b0+tmp*b1; mask = abs(b1-a1*rold) < abs(b1)*_gamm_err; list = where(mask); if (numberof(list)) r(ndx(list)) = b1(list)/a1(list); list = where(!mask); if (!numberof(list)) break; ndx = ndx(list); a = a(list); b = b(list); x = x(list); ren = 1./a1(list); a0 = a0(list)*ren; b0 = b0(list)*ren; b1 = rold = b1(list)*ren; a1 = 1.; } if (numberof(list)) error, "global variable _gamm_err or _gamm_max too small"; if (numberof(r) == 1) r = r(1); return r; }