/* PLWF.I Simple "painter's algorithm"-class routine for making 3-D wire frames and related models. $Id$ */ /* Copyright (c) 1996. The Regents of the University of California. All rights reserved. */ require, "pl3d.i"; func plwf (z,y,x, fill=,shade=,edges=,ecolor=,ewidth=,cull=,scale=,cmax=) /* DOCUMENT plwf, z or plwf, z, y,x plots a 3-D wire frame of the given Z array, which must have the same dimensions as the mesh (X, Y). If X and Y are not given, they default to the first and second indices of Z, respectively. The drawing order of the zones is determined by a simple "painter's algorithm", which works fairly well if the mesh is reasonably near rectilinear, but can fail even then if the viewpoint is chosen to produce extreme fisheye perspective effects. Look at the resulting plot carefully to be sure the algorithm has correctly rendered the model in each case. KEYWORDS: fill -- optional colors to use (default is to make zones have background color), same dimension options as for z argument to plf function shade -- set non-zero to compute shading from current 3D lighting sources edges -- default is 1 (draw edges), but if you provide fill colors, you may set to 0 to supress the edges ecolor, ewidth -- color and width of edges cull -- default is 1 (cull back surfaces), but if you want to see the "underside" of the model, set to 0 scale -- by default, Z is scaled to "reasonable" maximum and minimum values related to the scale of (X,Y). This keyword alters the default scaling factor, in the sense that scale=2.0 will produce twice the Z-relief of the default scale=1.0. cmax -- the ambient= keyword in light3 can be used to control how dark the darkest surface is; use this to control how light the lightest surface is the lightwf routine can change this parameter interactively SEE ALSO: lightwf, plm, plf, orient3, light3, window3, limit3 */ { if (_draw3) { xyz= _nxt(z); fill= _nxt(z); shade= _nxt(z); edges= _nxt(z); ecolor= _nxt(z); ewidth= _nxt(z); cull= _nxt(z); cmax= _nxt(z); get3_xy, xyz, x, y, z, 1; /* rotate (x,y,0) into on-screen orientation to determine order * just use four corners for this */ nx= dimsof(x); ny= nx(3); nx= nx(2); xyzc= xyz(,1:nx:nx-1,1:ny:ny-1); xyzc(3,,)= 0.0; get3_xy, xyzc, xc, yc, zc, 1; /* compute mean i-edge and j-edge vector z-components */ iedge= avg(zc(0,)-zc(1,)); jedge= avg(zc(,0)-zc(,1)); /* compute shading if necessary */ if (shade) { xyz(1,,)= x; xyz(2,,)= y; xyz(3,,)= z; fill= get3_light(xyz); } /* The order either requires a transpose or not, reversal of the order of the first dimension or not, and reversal of the order of the second dimension or not. */ /* The direction with the minimum magnitude average z-component must vary fastest in the painting order. If this is the j-direction, a transpose will be required to make this the i-direction. */ if (abs(jedge)<abs(iedge)) { tmp= iedge; iedge= jedge; jedge= tmp; x= transpose(x); y= transpose(y); if (!is_void(fill)) fill= transpose(fill); } /* Zones must be drawn from back to front, which means that the average z-component of the edge vectors must be positive. This can be arranged by reversing the order of the elements if necessary. */ if (iedge<0.0) { x= x(::-1,); y= y(::-1,); if (!is_void(fill)) fill= fill(::-1,); } if (jedge<0.0) { x= x(,::-1); y= y(,::-1); if (!is_void(fill)) fill= fill(,::-1); } plf, fill, y,x, edges=edges,ecolor=ecolor,ewidth=ewidth, cmin=0.0,cmax=cmax,legend=string(0); return; } xyz= xyz_wf(z, y, x, scale, scale=scale); if (is_void(edges)) edges= 1; if (is_void(shade)) shade= 0; else if (!is_void(fill)) error, "specify either fill or shade, not both"; clear3; limit3, scale; set3_object, plwf, _lst(xyz, fill, shade, edges, ecolor, ewidth, cull, cmax); } func lightwf (cmax) /* DOCUMENT lightwf, cmax Sets the cmax= parameter interactively, assuming the current 3D display list contains the result of a previous plwf call. This changes the color of the brightest surface in the picture. The darkest surface color can be controlled using the ambient= keyword to light3. SEE ALSO: plwf, light3 */ { list= _cdr(_draw3_list, _draw3_n); if (_car(list)!=plwf) error, "current 3D display list is not a plwf"; _undo3_set, lightwf, _car(_car(list,2), 8, cmax); } /* The function which scales the "topography" of z(x,y) is * potentially useful apart from plwf. * For example, the xyz array used by plwf can be converted from * a quadrilateral mesh plotted using plf to a polygon list plotted * using plfp like this: * xyz= xyz_wf(z,y,x,lims,scale=scale); * ni= dimsof(z)(2); * nj= dimsof(z)(3); * list= indgen(1:ni-1)+ni*indgen(0:nj-2)(-,); * xyz= xyz(,([0,1,ni+1,ni]+list(-,))(*)); * nxyz= array(4, (ni-1)*(nj-1)); * ... * limit3, lims; */ func xyz_wf (z, y, x, &lims, scale=) { if (min(dimsof(z))<2) error, "impossible dimensions for z array"; if (is_void(y) || is_void(x)) { if (!is_void(y) || !is_void(x)) error, "either give y,x both or neither"; nx= dimsof(z)(2); ny= dimsof(z)(3); x= span(1,nx,nx)(,-:1:ny); y= span(1,ny,ny)(-:1:nx,); } else if (anyof(dimsof(x)!=dimsof(z)) || anyof(dimsof(x)!=dimsof(z))) { error, "x, y, and z must all have same dimensions"; } lims= array(0., 3,3); lims(1:2,1)= xnx= _wf_safe(x); lims(1:2,2)= ynx= _wf_safe(y); lims(1:2,3)= _wf_safe(z); lims(3,1)= xnx(ptp); lims(3,2)= ynx(ptp); xyscl= double(max(xnx(ptp),ynx(ptp))); if (!is_void(scale)) xyscl*= scale; lims(3,3)= 0.5*xyscl; xyz= array(0.0, 3,dimsof(z)); xyz(1,,)= x; xyz(2,,)= y; xyz(3,,)= z; return xyz; } func _wf_safe(a) { mx= max(a); mn= min(a); if (mx==mn) { d= mn? 0.01*abs(mn) : 0.01; mn-= d; mx+= d; } return [mn,mx]; }