functions in rkutta.i - r

 
rk4

    y_at_x_plus_dx= rk4(y,dydx, x,dx, derivative)  


takes a single 4th order Runge-Kutta step from X to X+DX.  
DERIVATIVE(y,x) is a function returning dydx; the input DYDX  
is DERIVATIVE(y,x) at the input (X,Y).  This fourth evaluation  
of DERIVATIVE must be performed by the caller of rk4.  
Interpreted function, defined at i/rkutta.i   line 233  

 

rk_integrate

    y= rk_integrate(derivative, y1, x, epsilon, dx1)  


integrates dydx= DERIVATIVE(y,x) beginning at (X(1),Y1) and  
going to X(0) with fractional error EPSILON.  The result is  
the value of y at each value in the list X.  If non-nil, DX1  
will be used as initial guess for the first step size.  
Otherwise, X(2)-X(1) will be the first step size guess.  
The list of X values must be monotone -- strictly increasing  
or strictly decreasing; the Runge-Kutta step sizes are selected  
adaptively until the next X value would be passed, when the  
step size is adjusted to complete the step exactly.  
The external variable rk_maxits (default 10000) is the  
maximum number of steps rk_integrate will take.  
If a function rk_yscale(y,dydx,x,dx) exists, it is used  
to compute an appropriate yscale to give the EPSILON error  
criterion meaning.  Otherwise, yscale is taken to be:  
   abs(y)+abs(dydx*dx)+1.e-30  
Based on odeint from Numerical Recipes (Press, et.al.).  
If the function you are trying to integrate is very  
smooth, and your X values are fairly far apart, bs_integrate  
may work better than rk_integrate.  
Interpreted function, defined at i/rkutta.i   line 14  

SEE ALSO: rkutta,   bs_integrate,   rk_maxits,   rk_minstep,   rk_maxstep,   rk_ngood,  
rk_nbad,   rkdumb,   rk4  

 
 
 

rk_maxits

    rk_maxits  


Keyword,  defined at i/rkutta.i   line 142  

SEE rk_nstore  
 
 
 

rk_maxstep

    rk_maxstep  


Keyword,  defined at i/rkutta.i   line 142  

SEE rk_nstore  
 
 
 

rk_minstep

    rk_minstep  


Keyword,  defined at i/rkutta.i   line 142  

SEE rk_nstore  
 
 
 

rk_nbad

    rk_nbad  


Keyword,  defined at i/rkutta.i   line 142  

SEE rk_nstore  
 
 
 

rk_ngood

    rk_ngood  


Keyword,  defined at i/rkutta.i   line 142  

SEE rk_nstore  
 
 
 

rk_nstore

    rk_nstore, rk_maxits, rk_minstep, rk_maxstep,  
    rk_ngood, rk_nbad  


rk_nstore      maximum number of y values rkutta (bstoer) will store  
   after rkutta (bstoer) call, rk_y and rk_x contain stored values  
The other variables are inputs or outputs for rkutta, bstoer,  
rk_integrate, or bs_integrate:  
rk_maxits      maximum number of steps (default 10000)  
rk_minstep     minimum step size (default 0.0)  
rk_maxstep     maximum step size (default 1.e35)  
rk_ngood       number of good steps taken  
rk_nbad        number of failed (but repaired) steps taken  
Keyword,  defined at i/rkutta.i   line 142  

 

rk_store

    rk_store  


  
     Interpreted function, defined at i/rkutta.i   line 163  

 

rkdumb

    y_of_x= rkdumb(derivative, y0,x0, x1,nsteps)  


integrates dydx= DERIVATIVE(y,x) beginning at (X0,Y0) and  
going to X1 in NSTEPS 4th order Runge-Kutta steps.  The  
result is dimsof(Y0)-by-(NSTEPS+1) values of y at the points  
span(X0, X1, NSTEPS+1).  
If the nosave= keyword is non-zero, the returned value will  
simply be the final y value.  
Interpreted function, defined at i/rkutta.i   line 184  

 

rkqc

    rkqc  


  
     Interpreted function, defined at i/rkutta.i   line 205  

 

rkutta

    y1= rkutta(derivative, y0,x0, x1,epsilon, dx0)  


integrates dydx= DERIVATIVE(y,x) beginning at (X0,Y0) and  
going to X1 with fractional error EPSILON.  The result is  
the value of y at X1.  DX0 will be used as the initial guess  
for a step size.  
If the external variable rk_nstore is >0, rk_y and rk_x  
will contain up to rk_nstore intermediate values after the  
call to rkutta.  Consider using rk_integrate if you need  
this feature; using rk_nstore gives you the results at  
intermediate values which will tend to be closer where  
the Runge-Kutta step size was smaller, while rk_integrate  
forces you to specify precisely which x values you want.  
The external variable rk_maxits (default 10000) is the  
maximum number of steps rkutta will take.  The variable  
rk_minstep (default 0.0) is the minimum step size.  The  
variable rk_maxstep (default 1.e35) is the maximum step  
size, which you may need if you are storing intermediate  
values (particularly with bstoer).  
If a function rk_yscale(y,dydx,x,dx) exists, it is used  
to compute an appropriate yscale to give the EPSILON error  
criterion meaning.  Otherwise, yscale is taken to be:  
   abs(y)+abs(dydx*dx)+1.e-30  
Based on odeint from Numerical Recipes (Press, et.al.).  
If the function you are trying to integrate is very  
smooth, bstoer will probably work better than rkutta.  
Interpreted function, defined at i/rkutta.i   line 52  

SEE ALSO: rk_integrate,   bstoer,   rk_nstore,   rk_maxits,   rk_minstep,   rk_maxstep,  
rk_ngood,   rk_nbad,   rkdumb,   rk4  

 
 
 

rzextr

    rzextr  


  
     Interpreted function, defined at i/rkutta.i   line 338